Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Vaccine ; 41(26): 3862-3871, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-2313151

ABSTRACT

BACKGROUND: Immunosuppressive therapy used in the treatment of inflammatory bowel disease (IBD) is known to reduce vaccine immunogenicity. AIMS: This study aimed to 1) predict the humoral response elicited by SARS-CoV-2 vaccination in IBD patients based on their ongoing treatment and other relevant patient and vaccine characteristics and 2) assess the humoral response to a booster dose of mRNA vaccine. METHODS: We conducted a prospective study in adult IBD patients. Anti-spike (S) IgG antibodies were measured after initial vaccination and again after one booster dose. A multiple linear regression model was created to predict anti-S antibody titer following initial complete vaccination in different therapeutic groups (no immunosuppression, anti-TNF, immunomodulators and combination therapy). A two-tailed Wilcoxon test for two dependent groups was performed to compare anti-S values before and after the booster dose. RESULTS: Our study included 198 IBD patients. The multiple linear regression identified anti-TNF and combination therapy (versus no immunosuppression), current smoking, viral vector (versus mRNA) vaccine and interval between vaccination and anti-S measurement as statistically significant predictors of the log anti-S antibody levels (p < 0.001). No statistically significant differences were found between no immunosuppression and immunomodulators (p = 0.349) and between anti-TNF and combination therapy (p = 0.997). Statistically significant differences for anti-S antibody titer before and after the booster dose of mRNA SARS-CoV-2 vaccine were found, both for non-anti-TNF and anti-TNF groups. CONCLUSIONS: Anti-TNF treatment (either alone or in combination therapy) is associated with lower anti-S antibody levels. Booster mRNA doses seem to increase anti-S both in non-anti-TNF and anti-TNF treated patients. Special attention should be paid to this group of patients when planning vaccination schemes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Inflammatory Bowel Diseases , Adult , Humans , Adjuvants, Immunologic , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunoglobulin G , Inflammatory Bowel Diseases/drug therapy , Necrosis , Prospective Studies , SARS-CoV-2 , Vaccination , Tumor Necrosis Factor Inhibitors/adverse effects
2.
Clin Res Hepatol Gastroenterol ; 46(10): 102048, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2259075

ABSTRACT

We report a case series of four patients diagnosed with COVID-19-associated secondary sclerosing cholangitis (SSC), a recently described rare late complication of severe COVID-19. Following prolonged stays in the intensive care unit, these patients developed marked sustained cholestasis and jaundice despite clinical improvement. Cholangiography showed beaded appearance of intra-hepatic bile ducts and bile casts were removed in one patient. None of the patients reached normalization of liver enzymes and at least one progressed to liver cirrhosis (follow-up time of 11 to 16 months). COVID-19-associated SSC has a dismal prognosis with rapid progression to advanced chronic liver disease.


Subject(s)
COVID-19 , Cholangitis, Sclerosing , Cholestasis , Humans , Cholangitis, Sclerosing/complications , COVID-19/complications , Cholestasis/complications , Bile Ducts, Intrahepatic , Cholangiography
3.
Behav Sci (Basel) ; 13(2)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2225064

ABSTRACT

Seasonal vaccination against influenza and in-pandemic COVID-19 vaccination are top public health priorities; vaccines are the primary means of reducing infections and also controlling pressures on health systems. During the 2018-2019 influenza season, we conducted a study of the knowledge, attitudes, and behaviours of 159 general practitioners (GPs) and 189 patients aged ≥65 years in England using a combination of qualitative and quantitative approaches to document beliefs about seasonal influenza and seasonal influenza vaccine. GPs were surveyed before and after a continuing medical education (CME) module on influenza disease and vaccination with an adjuvanted trivalent influenza vaccine (aTIV) designed for patients aged ≥65 years, and patients were surveyed before and after a routine visit with a GP who participated in the CME portion of the study. The CME course was associated with significantly increased GP confidence in their ability to address patients' questions and concerns about influenza disease and vaccination (p < 0.001). Patients reported significantly increased confidence in the effectiveness and safety of aTIV after meeting their GP. Overall, 82.2% of the study population were vaccinated against influenza (including 137 patients vaccinated during the GP visit and 15 patients who had been previously vaccinated), a rate higher than the English national average vaccine uptake of 72.0% that season. These findings support the value of GP-patient interactions to foster vaccine acceptance.

4.
Stud Health Technol Inform ; 298: 137-141, 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2022608

ABSTRACT

The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) is one of Europe's oldest sentinel systems, providing sentinel surveillance since 1967. We report the interdisciplinary informatics required to run such a system. We used the Donabedian framework to describe the interdisciplinary informatics roles that support the structures, processes and outcomes of the RSC. Over the course of the COVID-19 pandemic University, RCGP, information technology specialists, SQL developers, analysts, practice liaison team, network member primary care providers, and their registered patients have nearly quadrupled the size of the RSC from working with 5 million to 19 million peoples pseudonymised health data. We have produced outputs used by the UK Health Security Agency to describe the epidemiology of COVID-19 and report vaccine effectiveness. We have also supported a trial of community-based therapies for COVID-19 and other observational studies. The home of the primary care sentinel surveillance network is with a clinical informatics research group. Interdisciplinary informatics teamwork was required to support primary care sentinel surveillance; such teams can accelerate the scale, scope and digital maturity of surveillance systems as demonstrated by the RSC across the COVID-19 pandemic.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Humans , Informatics , Pandemics , Primary Health Care , Sentinel Surveillance
5.
Sensors (Basel) ; 21(15)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1346524

ABSTRACT

Mobile health (mHealth) has emerged as a potential solution to providing valuable ecological information about the severity and burden of Parkinson's disease (PD) symptoms in real-life conditions. Objective: The objective of our study was to explore the feasibility and usability of an mHealth system for continuous and objective real-life measures of patients' health and functional mobility, in unsupervised settings. Methods: Patients with a clinical diagnosis of PD, who were able to walk unassisted, and had an Android smartphone were included. Patients were asked to answer a daily survey, to perform three weekly active tests, and to perform a monthly in-person clinical assessment. Feasibility and usability were explored as primary and secondary outcomes. An exploratory analysis was performed to investigate the correlation between data from the mKinetikos app and clinical assessments. Results: Seventeen participants (85%) completed the study. Sixteen participants (94.1%) showed a medium-to-high level of compliance with the mKinetikos system. A 6-point drop in the total score of the Post-Study System Usability Questionnaire was observed. Conclusions: Our results support the feasibility of the mKinetikos system for continuous and objective real-life measures of a patient's health and functional mobility. The observed correlations of mKinetikos metrics with clinical data seem to suggest that this mHealth solution is a promising tool to support clinical decisions.


Subject(s)
Mobile Applications , Parkinson Disease , Telemedicine , Feasibility Studies , Humans , Parkinson Disease/diagnosis , Smartphone
6.
Clin Case Rep ; 9(5): e04006, 2021 May.
Article in English | MEDLINE | ID: covidwho-1335982

ABSTRACT

Hemophagocytic lymphohistiocytosis poses a diagnostic dilemma due to the absence of specific clinical and laboratory findings, especially in adults. Despite greater recognition of the disease, secondary idiopathic forms are still reported.

7.
Stud Health Technol Inform ; 281: 759-763, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1247806

ABSTRACT

The effect of the 2020 pandemic, and of the national measures introduced to control it, is not yet fully understood. The aim of this study was to investigate how different types of primary care data can help quantify the effect of the coronavirus disease (COVID-19) crisis on mental health. A retrospective cohort study investigated changes in weekly counts of mental health consultations and prescriptions. The data were extracted from one the UK's largest primary care databases between January 1st 2015 and October 31st 2020 (end of follow-up). The 2020 trends were compared to the 2015-19 average with 95% confidence intervals using longitudinal plots and analysis of covariance (ANCOVA). A total number of 504 practices (7,057,447 patients) contributed data. During the period of national restrictions, on average, there were 31% (3957 ± 269, p < 0.001) fewer events and 6% (4878 ± 1108, p < 0.001) more prescriptions per week as compared to the 2015-19 average. The number of events was recovering, increasing by 75 (± 29, p = 0.012) per week. Prescriptions returned to the 2015-19 levels by the end of the study (p = 0.854). The significant reduction in the number of consultations represents part of the crisis. Future service planning and quality improvements are needed to reduce the negative effect on health and healthcare.


Subject(s)
COVID-19 , Mental Health , Humans , Prescriptions , Primary Health Care , Referral and Consultation , Retrospective Studies , SARS-CoV-2
8.
J Infect ; 83(2): 228-236, 2021 08.
Article in English | MEDLINE | ID: covidwho-1230619

ABSTRACT

OBJECTIVES: To mitigate risk of mortality from coronavirus 2019 infection (COVID-19), the UK government recommended 'shielding' of vulnerable people through self-isolation for 12 weeks. METHODS: A retrospective cohort study using a nationally representative English primary care database comparing people aged >= 40 years who were recorded as being advised to shield using a fixed ratio of 1:1, matching to people with the same diagnoses not advised to shield (n = 77,360 per group). Time-to-death was compared using Cox regression, reporting the hazard ratio (HR) of mortality between groups. A sensitivity analysis compared exact matched cohorts (n = 24,752 shielded, n = 61,566 exact matches). RESULTS: We found a time-varying HR of mortality between groups. In the first 21 days, the mortality risk in people shielding was half those not (HR = 0.50, 95%CI:0.41-0.59. p < 0.0001). Over the remaining nine weeks, mortality risk was 54% higher in the shielded group (HR=1.54, 95%CI:1.41-1.70, p < 0.0001). Beyond the shielding period, mortality risk was over two-and-a-half times higher in the shielded group (HR=2.61, 95%CI:2.38-2.87, p < 0.0001). CONCLUSIONS: Shielding halved the risk of mortality for 21 days. Mortality risk became higher across the remainder of the shielding period, rising to two-and-a-half times greater post-shielding. Shielding may be beneficial in the next wave of COVID-19.


Subject(s)
COVID-19 , Cohort Studies , Humans , Primary Health Care , Retrospective Studies , SARS-CoV-2
9.
Euro Surveill ; 26(11)2021 03.
Article in English | MEDLINE | ID: covidwho-1181332

ABSTRACT

BackgroundA multi-tiered surveillance system based on influenza surveillance was adopted in the United Kingdom in the early stages of the coronavirus disease (COVID-19) epidemic to monitor different stages of the disease. Mandatory social and physical distancing measures (SPDM) were introduced on 23 March 2020 to attempt to limit transmission.AimTo describe the impact of SPDM on COVID-19 activity as detected through the different surveillance systems.MethodsData from national population surveys, web-based indicators, syndromic surveillance, sentinel swabbing, respiratory outbreaks, secondary care admissions and mortality indicators from the start of the epidemic to week 18 2020 were used to identify the timing of peaks in surveillance indicators relative to the introduction of SPDM. This timing was compared with median time from symptom onset to different stages of illness and levels of care or interactions with healthcare services.ResultsThe impact of SPDM was detected within 1 week through population surveys, web search indicators and sentinel swabbing reported by onset date. There were detectable impacts on syndromic surveillance indicators for difficulty breathing, influenza-like illness and COVID-19 coding at 2, 7 and 12 days respectively, hospitalisations and critical care admissions (both 12 days), laboratory positivity (14 days), deaths (17 days) and nursing home outbreaks (4 weeks).ConclusionThe impact of SPDM on COVID-19 activity was detectable within 1 week through community surveillance indicators, highlighting their importance in early detection of changes in activity. Community swabbing surveillance may be increasingly important as a specific indicator, should circulation of seasonal respiratory viruses increase.


Subject(s)
COVID-19/prevention & control , Epidemiological Monitoring , Physical Distancing , COVID-19/epidemiology , Humans , United Kingdom/epidemiology
10.
PLoS One ; 16(3): e0248123, 2021.
Article in English | MEDLINE | ID: covidwho-1133687

ABSTRACT

INTRODUCTION: Rapid Point of Care Testing (POCT) for influenza could be used to provide information on influenza vaccine effectiveness (IVE) as well as influencing clinical decision-making in primary care. METHODS: We undertook a test negative case control study to estimate the overall and age-specific (6 months-17 years, 18-64 years, ≥65 years old) IVE against medically attended POCT-confirmed influenza. The study took place over the winter of 2019-2020 and was nested within twelve general practices that are part of the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), the English sentinel surveillance network. RESULTS: 648 POCT were conducted. 193 (29.7%) of those who were swabbed had received the seasonal influenza vaccine. The crude unadjusted overall IVE was 46.1% (95% CI: 13.9-66.3). After adjusting for confounders the overall IVE was 26.0% (95% CI: 0-65.5). In total 211 patients were prescribed an antimicrobial after swab testing. Given a positive influenza POCT result, the odds ratio (OR) of receiving an antiviral was 21.1 (95%CI: 2.4-182.2, p = <0.01) and the OR of being prescribed an antibiotic was 0.6 (95%CI: 0.4-0.9, p = <0.01). DISCUSSION: Using influenza POCT in a primary care sentinel surveillance network to estimate IVE is feasible and provides comparable results to published IVE estimates. A further advantage is that near patient testing of influenza is associated with improvements in appropriate antiviral and antibiotic use. Larger, randomised studies are needed in primary care to see if these trends are still present and to explore their impact on outcomes.


Subject(s)
Influenza Vaccines/therapeutic use , Influenza, Human/diagnosis , Point-of-Care Testing , Sentinel Surveillance , Adolescent , Adult , Age Factors , Aged , Child , Child, Preschool , England , Female , Humans , Infant , Influenza, Human/prevention & control , Male , Middle Aged , Primary Health Care/methods , Primary Health Care/statistics & numerical data , Seasons , Treatment Outcome , Young Adult
11.
JMIR Public Health Surveill ; 7(2): e24341, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1090464

ABSTRACT

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) are commencing their 54th season of collaboration at a time when SARS-CoV-2 infections are likely to be cocirculating with the usual winter infections. OBJECTIVE: The aim of this study is to conduct surveillance of influenza and other monitored respiratory conditions and to report on vaccine uptake and effectiveness using nationally representative surveillance data extracted from primary care computerized medical records systems. We also aim to have general practices collect virology and serology specimens and to participate in trials and other interventional research. METHODS: The RCGP RSC network comprises over 1700 general practices in England and Wales. We will extract pseudonymized data twice weekly and are migrating to a system of daily extracts. First, we will collect pseudonymized, routine, coded clinical data for the surveillance of monitored and unexpected conditions; data on vaccine exposure and adverse events of interest; and data on approved research study outcomes. Second, we will provide dashboards to give general practices feedback about levels of care and data quality, as compared to other network practices. We will focus on collecting data on influenza-like illness, upper and lower respiratory tract infections, and suspected COVID-19. Third, approximately 300 practices will participate in the 2020-2021 virology and serology surveillance; this will include responsive surveillance and long-term follow-up of previous SARS-CoV-2 infections. Fourth, member practices will be able to recruit volunteer patients to trials, including early interventions to improve COVID-19 outcomes and point-of-care testing. Lastly, the legal basis for our surveillance with PHE is Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002; other studies require appropriate ethical approval. RESULTS: The RCGP RSC network has tripled in size; there were previously 100 virology practices and 500 practices overall in the network and we now have 322 and 1724, respectively. The Oxford-RCGP Clinical Informatics Digital Hub (ORCHID) secure networks enable the daily analysis of the extended network; currently, 1076 practices are uploaded. We are implementing a central swab distribution system for patients self-swabbing at home in addition to in-practice sampling. We have converted all our primary care coding to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) coding. Throughout spring and summer 2020, the network has continued to collect specimens in preparation for the winter or for any second wave of COVID-19 cases. We have collected 5404 swabs and detected 623 cases of COVID-19 through extended virological sampling, and 19,341 samples have been collected for serology. This shows our preparedness for the winter season. CONCLUSIONS: The COVID-19 pandemic has been associated with a groundswell of general practices joining our network. It has also created a permissive environment in which we have developed the capacity and capability of the national primary care surveillance systems and our unique public health institute, the RCGP and University of Oxford collaboration.


Subject(s)
Clinical Protocols , Influenza, Human/prevention & control , Respiratory Tract Infections/prevention & control , Vaccines/therapeutic use , COVID-19/prevention & control , Female , Humans , Influenza, Human/drug therapy , Male , Middle Aged , Population Surveillance/methods , Public Health , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , United Kingdom , COVID-19 Drug Treatment
12.
Hypertension ; 77(3): 846-855, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1083929

ABSTRACT

Hypertension has been identified as a risk factor for coronavirus disease 2019 (COVID-19) and associated adverse outcomes. This study examined the association between preinfection blood pressure (BP) control and COVID-19 outcomes using data from 460 general practices in England. Eligible patients were adults with hypertension who were tested or diagnosed with COVID-19. BP control was defined by the most recent BP reading within 24 months of the index date (January 1, 2020). BP was defined as controlled (<130/80 mm Hg), raised (130/80-139/89 mm Hg), stage 1 uncontrolled (140/90-159/99 mm Hg), or stage 2 uncontrolled (≥160/100 mm Hg). The primary outcome was death within 28 days of COVID-19 diagnosis. Secondary outcomes were COVID-19 diagnosis and COVID-19-related hospital admission. Multivariable logistic regression was used to examine the association between BP control and outcomes. Of the 45 418 patients (mean age, 67 years; 44.7% male) included, 11 950 (26.3%) had controlled BP. These patients were older, had more comorbidities, and had been diagnosed with hypertension for longer. A total of 4277 patients (9.4%) were diagnosed with COVID-19 and 877 died within 28 days. Individuals with stage 1 uncontrolled BP had lower odds of COVID-19 death (odds ratio, 0.76 [95% CI, 0.62-0.92]) compared with patients with well-controlled BP. There was no association between BP control and COVID-19 diagnosis or hospitalization. These findings suggest BP control may be associated with worse COVID-19 outcomes, possibly due to these patients having more advanced atherosclerosis and target organ damage. Such patients may need to consider adhering to stricter social distancing, to limit the impact of COVID-19 as future waves of the pandemic occur.


Subject(s)
Blood Pressure/drug effects , COVID-19/epidemiology , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antihypertensive Agents/therapeutic use , Atherosclerosis/epidemiology , COVID-19/prevention & control , Comorbidity , England/epidemiology , Ethnicity/statistics & numerical data , Female , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Hypertension/drug therapy , Logistic Models , Male , Middle Aged , Odds Ratio , Primary Health Care/statistics & numerical data , Retrospective Studies , Risk Factors , Severity of Illness Index , Survival Analysis , Treatment Outcome
13.
Diagn Progn Res ; 5(1): 4, 2021 Feb 08.
Article in English | MEDLINE | ID: covidwho-1069608

ABSTRACT

BACKGROUND: The aim of RApid community Point-of-care Testing fOR COVID-19 (RAPTOR-C19) is to assess the diagnostic accuracy of multiple current and emerging point-of-care tests (POCTs) for active and past SARS-CoV2 infection in the community setting. RAPTOR-C19 will provide the community testbed to the COVID-19 National DiagnOstic Research and Evaluation Platform (CONDOR). METHODS: RAPTOR-C19 incorporates a series of prospective observational parallel diagnostic accuracy studies of SARS-CoV2 POCTs against laboratory and composite reference standards in patients with suspected current or past SARS-CoV2 infection attending community settings. Adults and children with suspected current SARS-CoV2 infection who are having an oropharyngeal/nasopharyngeal (OP/NP) swab for laboratory SARS-CoV2 reverse transcriptase Digital/Real-Time Polymerase Chain Reaction (d/rRT-PCR) as part of clinical care or community-based testing will be invited to participate. Adults (≥ 16 years) with suspected past symptomatic infection will also be recruited. Asymptomatic individuals will not be eligible. At the baseline visit, all participants will be asked to submit samples for at least one candidate point-of-care test (POCT) being evaluated (index test/s) as well as an OP/NP swab for laboratory SARS-CoV2 RT-PCR performed by Public Health England (PHE) (reference standard for current infection). Adults will also be asked for a blood sample for laboratory SARS-CoV-2 antibody testing by PHE (reference standard for past infection), where feasible adults will be invited to attend a second visit at 28 days for repeat antibody testing. Additional study data (e.g. demographics, symptoms, observations, household contacts) will be captured electronically. Sensitivity, specificity, positive, and negative predictive values for each POCT will be calculated with exact 95% confidence intervals when compared to the reference standard. POCTs will also be compared to composite reference standards constructed using paired antibody test results, patient reported outcomes, linked electronic health records for outcomes related to COVID-19 such as hospitalisation or death, and other test results. DISCUSSION: High-performing POCTs for community use could be transformational. Real-time results could lead to personal and public health impacts such as reducing onward household transmission of SARS-CoV2 infection, improving surveillance of health and social care staff, contributing to accurate prevalence estimates, and understanding of SARS-CoV2 transmission dynamics in the population. In contrast, poorly performing POCTs could have negative effects, so it is necessary to undertake community-based diagnostic accuracy evaluations before rolling these out. TRIAL REGISTRATION: ISRCTN, ISRCTN14226970.

15.
Transplant Proc ; 53(4): 1180-1186, 2021 May.
Article in English | MEDLINE | ID: covidwho-1014863

ABSTRACT

OBJECTIVES: Knowledge about the impact of coronavirus disease 2019 (COVID-19) on kidney transplant recipients (KTRs) concerning viral shedding and humoral immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is limited. The aim of this study is to analyze viral dynamics and the antibody response to SARS-CoV-2 in KTRs with COVID-19 and study their association with clinical data. MATERIALS AND METHODS: Consecutive KTRs diagnosed with COVID-19 at our center were evaluated for clinical presentation and outcome; duration of viral shedding and viral burden by reverse transcription-polymerase chain reaction assay cycle threshold; and magnitude of seroconversion to SARS-CoV-2. RESULTS: Six KTRs identified with COVID-19 were hospitalized. Presenting symptoms were similar to those in the general population. Four patients had severe disease and, of these, 2 required mechanical ventilation, 4 had acute kidney injury, and 3 had secondary bacterial infections. Immunosuppression was reduced in all patients. Five patients were treated with hydroxychloroquine. No patient required dialysis or died. Patients with severe disease had a longer duration of viral shedding, which lasted more than 40 days, and had IgG antibodies against SARS-CoV-2, which were detected from 3 weeks to as long as 10 weeks after symptom onset. In patients with less severe disease no IgG antibodies where detected between 9 and 14 weeks after symptom onset. CONCLUSIONS: In our series, KTRs with severe COVID-19 had prolonged viral shedding and a stronger humoral immune response to SARS-CoV-2. These preliminary data need to be confirmed with further studies and over a longer period of time.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Kidney Transplantation , Adult , Aged , COVID-19/complications , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/therapy , Male , Middle Aged , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Time Factors , Virus Shedding , COVID-19 Drug Treatment
16.
JMIR Public Health Surveill ; 6(4): e21434, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-976102

ABSTRACT

BACKGROUND: Creating an ontology for COVID-19 surveillance should help ensure transparency and consistency. Ontologies formalize conceptualizations at either the domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was an extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. OBJECTIVE: This study aimed to develop an application ontology for COVID-19 that can be deployed across the various use-case domains of the RCGP RSC research and surveillance activities. METHODS: We described our domain-specific use case. The actor was the RCGP RSC sentinel network, the system was the course of the COVID-19 pandemic, and the outcomes were the spread and effect of mitigation measures. We used our established 3-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system-independent COVID-19 case identification algorithm. As there were no gold-standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association Primary Health Care Informatics working group and extended networks. RESULTS: Our use-case domains included primary care, public health, virology, clinical research, and clinical informatics. Our ontology supported (1) case identification, microbiological sampling, and health outcomes at an individual practice and at the national level; (2) feedback through a dashboard; (3) a national observatory; (4) regular updates for Public Health England; and (5) transformation of a sentinel network into a trial platform. We have identified a total of 19,115 people with a definite COVID-19 status, 5226 probable cases, and 74,293 people with possible COVID-19, within the RCGP RSC network (N=5,370,225). CONCLUSIONS: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential.


Subject(s)
Biological Ontologies , COVID-19/epidemiology , Primary Health Care/methods , Sentinel Surveillance , Humans , Pandemics
17.
Br J Gen Pract ; 70(701): e890-e898, 2020 12.
Article in English | MEDLINE | ID: covidwho-881363

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has passed its first peak in Europe. AIM: To describe the mortality in England and its association with SARS-CoV-2 status and other demographic and risk factors. DESIGN AND SETTING: Cross-sectional analyses of people with known SARS-CoV-2 status in the Oxford RCGP Research and Surveillance Centre (RSC) sentinel network. METHOD: Pseudonymised, coded clinical data were uploaded from volunteer general practice members of this nationally representative network (n = 4 413 734). All-cause mortality was compared with national rates for 2019, using a relative survival model, reporting relative hazard ratios (RHR), and 95% confidence intervals (CI). A multivariable adjusted odds ratios (OR) analysis was conducted for those with known SARS-CoV-2 status (n = 56 628, 1.3%) including multiple imputation and inverse probability analysis, and a complete cases sensitivity analysis. RESULTS: Mortality peaked in week 16. People living in households of ≥9 had a fivefold increase in relative mortality (RHR = 5.1, 95% CI = 4.87 to 5.31, P<0.0001). The ORs of mortality were 8.9 (95% CI = 6.7 to 11.8, P<0.0001) and 9.7 (95% CI = 7.1 to 13.2, P<0.0001) for virologically and clinically diagnosed cases respectively, using people with negative tests as reference. The adjusted mortality for the virologically confirmed group was 18.1% (95% CI = 17.6 to 18.7). Male sex, population density, black ethnicity (compared to white), and people with long-term conditions, including learning disability (OR = 1.96, 95% CI = 1.22 to 3.18, P = 0.0056) had higher odds of mortality. CONCLUSION: The first SARS-CoV-2 peak in England has been associated with excess mortality. Planning for subsequent peaks needs to better manage risk in males, those of black ethnicity, older people, people with learning disabilities, and people who live in multi-occupancy dwellings.


Subject(s)
COVID-19 , Noncommunicable Diseases/epidemiology , SARS-CoV-2/isolation & purification , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , Electronic Health Records/statistics & numerical data , England/epidemiology , Ethnicity , Family Characteristics , Female , Humans , Male , Middle Aged , Mortality , Risk Assessment/methods , Risk Factors , Sentinel Surveillance , Sex Factors
18.
JMIR Public Health Surveill ; 6(3): e19773, 2020 07 02.
Article in English | MEDLINE | ID: covidwho-791866

ABSTRACT

BACKGROUND: Routinely recorded primary care data have been used for many years by sentinel networks for surveillance. More recently, real world data have been used for a wider range of research projects to support rapid, inexpensive clinical trials. Because the partial national lockdown in the United Kingdom due to the coronavirus disease (COVID-19) pandemic has resulted in decreasing community disease incidence, much larger numbers of general practices are needed to deliver effective COVID-19 surveillance and contribute to in-pandemic clinical trials. OBJECTIVE: The aim of this protocol is to describe the rapid design and development of the Oxford Royal College of General Practitioners Clinical Informatics Digital Hub (ORCHID) and its first two platforms. The Surveillance Platform will provide extended primary care surveillance, while the Trials Platform is a streamlined clinical trials platform that will be integrated into routine primary care practice. METHODS: We will apply the FAIR (Findable, Accessible, Interoperable, and Reusable) metadata principles to a new, integrated digital health hub that will extract routinely collected general practice electronic health data for use in clinical trials and provide enhanced communicable disease surveillance. The hub will be findable through membership in Health Data Research UK and European metadata repositories. Accessibility through an online application system will provide access to study-ready data sets or developed custom data sets. Interoperability will be facilitated by fixed linkage to other key sources such as Hospital Episodes Statistics and the Office of National Statistics using pseudonymized data. All semantic descriptors (ie, ontologies) and code used for analysis will be made available to accelerate analyses. We will also make data available using common data models, starting with the US Food and Drug Administration Sentinel and Observational Medical Outcomes Partnership approaches, to facilitate international studies. The Surveillance Platform will provide access to data for health protection and promotion work as authorized through agreements between Oxford, the Royal College of General Practitioners, and Public Health England. All studies using the Trials Platform will go through appropriate ethical and other regulatory approval processes. RESULTS: The hub will be a bottom-up, professionally led network that will provide benefits for member practices, our health service, and the population served. Data will only be used for SQUIRE (surveillance, quality improvement, research, and education) purposes. We have already received positive responses from practices, and the number of practices in the network has doubled to over 1150 since February 2020. COVID-19 surveillance has resulted in tripling of the number of virology sites to 293 (target 300), which has aided the collection of the largest ever weekly total of surveillance swabs in the United Kingdom as well as over 3000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology samples. Practices are recruiting to the PRINCIPLE (Platform Randomised trial of INterventions against COVID-19 In older PeopLE) trial, and these participants will be followed up through ORCHID. These initial outputs demonstrate the feasibility of ORCHID to provide an extended national digital health hub. CONCLUSIONS: ORCHID will provide equitable and innovative use of big data through a professionally led national primary care network and the application of FAIR principles. The secure data hub will host routinely collected general practice data linked to other key health care repositories for clinical trials and support enhanced in situ surveillance without always requiring large volume data extracts. ORCHID will support rapid data extraction, analysis, and dissemination with the aim of improving future research and development in general practice to positively impact patient care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19773.


Subject(s)
Clinical Trials as Topic , Coronavirus Infections/epidemiology , General Practice/organization & administration , Medical Records Systems, Computerized , Pneumonia, Viral/epidemiology , Public Health Surveillance , COVID-19 , Humans , Pandemics , Primary Health Care/organization & administration , Societies, Medical , United Kingdom/epidemiology
19.
J Infect ; 81(5): 785-792, 2020 11.
Article in English | MEDLINE | ID: covidwho-728713

ABSTRACT

OBJECTIVES: Few studies report contributors to the excess mortality in England during the first wave of coronavirus disease 2019 (COVID-19) infection. We report the absolute excess risk (AER) of mortality and excess mortality rate (EMR) from a nationally representative COVID-19 sentinel surveillance network including known COVID-19 risk factors in people aged 45 years and above. METHODS: Pseudonymised, coded clinical data were uploaded from contributing primary care providers (N = 1,970,314, ≥45years). We calculated the AER in mortality by comparing mortality for weeks 2 to 20 this year with mortality data from the Office for National Statistics (ONS) from 2018 for the same weeks. We conducted univariate and multivariate analysis including preselected variables. We report AER and EMR, with 95% confidence intervals (95% CI). RESULTS: The AER of mortality was 197.8/10,000 person years (95%CI:194.30-201.40). The EMR for male gender, compared with female, was 1.4 (95%CI:1.35-1.44, p<0.00); for our oldest age band (≥75 years) 10.09 (95%CI:9.46-10.75, p<0.00) compared to 45-64 year olds; Black ethnicity's EMR was 1.17 (95%CI: 1.03-1.33, p<0.02), reference white; and for dwellings with ≥9 occupants 8.01 (95%CI: 9.46-10.75, p<0.00). Presence of all included comorbidities significantly increased EMR. Ranked from lowest to highest these were: hypertension, chronic kidney disease, chronic respiratory and heart disease, and cancer or immunocompromised. CONCLUSIONS: The absolute excess mortality was approximately 2 deaths per 100 person years in the first wave of COVID-19. More personalised shielding advice for any second wave should include ethnicity, comorbidity and household size as predictors of risk.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Age Factors , Aged , Black People , COVID-19 , Comorbidity , Coronavirus Infections/ethnology , Coronavirus Infections/virology , Cross-Sectional Studies , England/epidemiology , Family Characteristics , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/ethnology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Sentinel Surveillance , Sex Factors , White People
20.
JMIR Public Health Surveill ; 6(2): e18606, 2020 04 02.
Article in English | MEDLINE | ID: covidwho-31012

ABSTRACT

BACKGROUND: The Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) have successfully worked together on the surveillance of influenza and other infectious diseases for over 50 years, including three previous pandemics. With the emergence of the international outbreak of the coronavirus infection (COVID-19), a UK national approach to containment has been established to test people suspected of exposure to COVID-19. At the same time and separately, the RCGP RSC's surveillance has been extended to monitor the temporal and geographical distribution of COVID-19 infection in the community as well as assess the effectiveness of the containment strategy. OBJECTIVES: The aims of this study are to surveil COVID-19 in both asymptomatic populations and ambulatory cases with respiratory infections, ascertain both the rate and pattern of COVID-19 spread, and assess the effectiveness of the containment policy. METHODS: The RCGP RSC, a network of over 500 general practices in England, extract pseudonymized data weekly. This extended surveillance comprises of five components: (1) Recording in medical records of anyone suspected to have or who has been exposed to COVID-19. Computerized medical records suppliers have within a week of request created new codes to support this. (2) Extension of current virological surveillance and testing people with influenza-like illness or lower respiratory tract infections (LRTI)-with the caveat that people suspected to have or who have been exposed to COVID-19 should be referred to the national containment pathway and not seen in primary care. (3) Serology sample collection across all age groups. This will be an extra blood sample taken from people who are attending their general practice for a scheduled blood test. The 100 general practices currently undertaking annual influenza virology surveillance will be involved in the extended virological and serological surveillance. (4) Collecting convalescent serum samples. (5) Data curation. We have the opportunity to escalate the data extraction to twice weekly if needed. Swabs and sera will be analyzed in PHE reference laboratories. RESULTS: General practice clinical system providers have introduced an emergency new set of clinical codes to support COVID-19 surveillance. Additionally, practices participating in current virology surveillance are now taking samples for COVID-19 surveillance from low-risk patients presenting with LRTIs. Within the first 2 weeks of setup of this surveillance, we have identified 3 cases: 1 through the new coding system, the other 2 through the extended virology sampling. CONCLUSIONS: We have rapidly converted the established national RCGP RSC influenza surveillance system into one that can test the effectiveness of the COVID-19 containment policy. The extended surveillance has already seen the use of new codes with 3 cases reported. Rapid sharing of this protocol should enable scientific critique and shared learning. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/18606.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Disease Notification/methods , Medical Records Systems, Computerized , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Public Health Surveillance/methods , Betacoronavirus , COVID-19 , Disease Outbreaks , England/epidemiology , Female , Humans , Male , Public Health , SARS-CoV-2 , Sentinel Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL